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Copropagation of a laser pulse and a relativistic electron beam in a corrugated plasma channel has been
proposed for the direct laser acceleration of electrons �Palastro et al., Phys. Rev. E 77, 036405 �2008��. The
corrugated plasma channel allows for the guiding of laser pulses composed of subluminal spatial harmonics.
Phase matching between the electron beam and the spatial harmonics results in acceleration, but for high beam
densities, the pulse energy can be rapidly depleted. This depletion may result in interaction times shorter than
the waveguide length limited time or pulse length dephasing time. We present an analytic model and self-
consistent simulations of the electron beam–laser pulse interaction. A linear dispersion relation is derived. The
effect of the electron beam on the pulse after the occurrence of axial bunching is examined. Injection of axially
modulated electron beams is also explored. In particular, we find that a properly phased electron beam can
transfer energy to the laser pulse as an inverse process to acceleration.
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I. INTRODUCTION

Advancements in laser technology have resulted in ever
shorter and more energetic laser pulses. The relative ease of
generating energetic laser pulses at near-optical frequencies
has spawned an entire field—laser-matter interactions—the
goal of which is the efficient coupling of laser energy into
matter. Typically, the matter is used to drive a secondary
process inaccessible to solid-state technology: x-ray sources
for indirect inertial confinement fusion or backlighting �1,2�,
the creation of hot spots in fast ignition targets �3�, noninva-
sive cancer therapy �4�, nuclear stimulation �5�, and the cre-
ation of nonlinear plasma wakefields �6�. Perhaps the most
rapidly expanding and widely accessible subfield of laser-
matter interactions is laser-based electron acceleration.

Several schemes have been proposed or demonstrated for
electron acceleration �6–11� with laser-wakefield accelera-
tion providing the largest energy gains to date: Leemans et
al. observed gradients of �500 MeV /cm, 3 orders of mag-
nitude higher than the Stanford Linear Accelerator, but only
over �2 cm �7�. Wakefield acceleration, by design, relies on
the nonlinear ponderomotive force of the laser to drive large
amplitude plasma waves and, as a result, requires high-
power short-pulse lasers. Several methods for the direct laser
acceleration of electrons have been proposed as lower laser
power alternatives to wakefield acceleration, including the
semi-infinite vacuum accelerator �10�, the inverse Cherenkov
accelerator �11�, and the axially uniform plasma channel ac-
celerator �12�. For all of these schemes, however, the maxi-
mum energy gain of electrons is much lower than those
achieved in wakefield accelerators.

Direct laser acceleration of electrons in corrugated plasma
channels �13,14� utilizes the linear laser electric field and as
a result requires lower pulse powers ��1 TW� at low pulse
energies ��300 mJ�, while still providing reasonable gradi-
ents �100 MeV /cm. Creation of the corrugated plasma

channel has been demonstrated �15� and potential creation
mechanisms were proposed �16�. If the channel and laser
parameters are chosen properly, a guided radially polarized
short-pulse laser can transfer energy to a relativistic electron
beam through quasi-phase-matched acceleration �QPMA�.
The radial polarization of the laser provides an axial electric
field component necessary for acceleration. The axially peri-
odic structure of the channel provides a phase modulation of
the laser, resulting in oscillations of the laser phase velocity.
The electrons are more closely phase matched to the laser
when the axial field strength is high and out of phase with
the laser when the axial field strength is low—quasiphase
matching. The same phenomenon can be interpreted as the
guided mode being composed of subluminal spatial harmon-
ics: one of these harmonics can be phase matched to the
relativistic electron beam, providing linear energy gain over
long distances.

A scaling law for the energy gain of QPMA in corrugated
plasma channels predicts much higher energy gains than
other direct acceleration schemes and compares favorably to
wakefield acceleration at low pulse energies �13,14�. For a
laser pulse with a duration of 300 fs, spot size of 15 �m,
and normalized vector potential of a0=0.25, matched to
plasma channel with an on-axis electron density of 7
�1018 /cm−3, corrugation size of 350 �m, and a relative
modulation amplitude of 0.9, the scaling law predicts an en-
ergy gain of several hundred MeV for an initial electron-
beam energy of 50 MeV. Similar scaling laws using the same
parameters for semi-infinite vacuum acceleration predict en-
ergy gain of tens of MeV, while scaling laws for resonant
wakefield acceleration predict several hundred MeV �the
pulse length is shortened to match the plasma length but the
laser amplitude increased to maintain the pulse energy�. All
of the parameters used are experimentally realizable and
clearly demarcate the parameter region of interest for QPMA
in corrugated plasma channels.
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In addition to axial acceleration, the guided mode also
provides focusing forces that confine high-energy electrons
on axis, while expelling low-energy electrons from the center
of the beam. Half of the electrons in the accelerating phase
are initially focused while the other half defocused. If the
channel and beam parameters are chosen properly, there is a
maximum phase slip for the accelerated electrons. Initially
accelerated and focused electrons can remain in the focusing/
acceleration phase indefinitely, creating a well-collimated,
high-energy bunch. Spatial filtering of the electron beam
could then be used remove the high divergence �low axial
momentum� portion of the beam, leaving the high axial mo-
mentum, low divergence subset.

Our previous studies have demonstrated the phenomenon
of quasiphase matching, verified the scaling law, and exam-
ined the transverse beam dynamics. The beam-pulse interac-
tion, however, was not handled self-consistently. Here we
consider the self-consistent interaction of the laser pulse and
electron beam in order to study the effects of energy transfer.
Our previous scaling laws assumed the acceleration distance
was limited by “pulse length dephasing”—the time it takes
for the electrons to outrun the laser pulse. If the pulse energy,
and concomitantly the field amplitude, cannot be sustained
over this distance, the energy gains could be significantly
lower. An examination of the self-consistent beam-pulse in-
teraction is thus a necessity for understanding the limitations
of QPMA in corrugated plasma channels.

This paper is organized as follows. In Sec. II, we present
our model of laser-pulse propagation that separates the trans-
verse equation determining the evolution of the laser phase
and the equation determining the evolution of the longitudi-
nal pulse shape. Section III presents the linear dispersion
relation for the interaction of the short-pulse laser and rela-
tivistic electron beam. In Sec. IV, we briefly discuss the re-
action of the channel to the electron beam driven wakefields.
Section V contains our numerical algorithm of the pulse-
beam interaction and analysis of our simulation results. Sec-
tion VI discusses the inverse process by which a properly
phased electron beam can transfer energy to the short-pulse
laser. Section VII includes our summary and conclusions.

II. LASER-PULSE PROPAGATION MODEL

We start with Maxwell’s equations for the electromagnetic
field in the presence of a background plasma and electron-
beam current

� � E� = −
1

c

�B�

�t
, �1�

� � B� =
1

c

�D�

�t
+

4�

c
J�b, �2�

where J�b is the relativistic beam current, D�̂ ���

=��r ,z ,��E�̂ ���, the carrot notation represents a temporally
Fourier-transformed variable, and ��r ,z ,�� is the dielectric
constant for the background plasma. Following Ref. �13�, we
consider a cold, nonrelativistic background plasma with a

dielectric constant given by ��r ,z ,��=1−�p
2�r ,z� /�2, where

�p
2 =4�e2ne�r ,z� /me, e is the electron charge, me the electron

mass, and ne�r ,z� is the electron density. The electron-
density profile is meant to model the experimentally pro-
duced corrugated plasma waveguides �15�, paralleling our
previous studies �13�

ne�r,z� = no�1 + � sin�kmz�� + no�r
2/2, �3�

where � is the relative amplitude of the density modulation,
no� determines the radial dependence, and km is the wave
number describing the axial periodicity of the channel.

The electromagnetic field is expressed as

E� �x�,t� = ��z,t�	��x��ei�k0z−�t� + c.c., �4�

B� �x�,t� = ��z,t�
� �x��ei�k0z−�t� + c.c., �5�

where ko and � are the central wave number and frequency

of the laser pulse, respectively, 	� and 
� are the envelopes
determining the transverse structure, amplitude, and phase of
the field, and ��z , t� is a “superenvelope” determining the

longitudinal pulse shape. In particular, 	� and 
� respond to the
background plasma and ��z , t� responds to the relativistic
electron beam. We are interested in radially polarized modes,

	� = �	r ,0 ,	z� and 
� = �0,
� ,0�, which provide the axial field
component necessary for acceleration of the electron beam.
We assume that the pulse remains azimuthally symmetric for
all time and consider corrugated plasma channels paralleling
those created by Layer et al. �15� for which the plasma fre-
quency satisfies �p��. As discussed in Appendix A, the

equations for 	� and ��z , t� can be separated with 	r satisfying

�2iko
�

�z
+

1

r

�

�r
r

�

�r
−

1

r2�	r =
�p

2�r,z�
c2 	r. �6�

In our previous work, it was shown that the lowest radial
eigenmode solution to this equation for the density profile in
Eq. �3� is

	r�r,z� = 	0
r

wch
e−r2/wch

2 �
m

imJm�
�e−i
+i��k+mkm�z, �7�

where wch= �2c�1/2�2 /�p,0�2 �1/4 is the matched spot size of the
plasma channel, �k=−k0��p

2 /2�2+4 / �k0wch�2� is the wave-
number shift due to the background plasma and channel, and

=��p,0

2 /2c2k0km is the amplitude of the periodic phase
modulation from the modulated density profile. With Eq. �7�,
	z and 
� can be found via Eqs. �1� and �2�,

��+ ik0ẑ� � 	� =
i�

c

� , �8�

��+ ik0ẑ� � 
� = −
i�

c
�	� , �9�

where d /dz�k0 is understood in Eqs. �8� and �9�.
The equation for the superenvelope ��z , t� is obtained by

forming the dot product of Eq. �2� with the conjugate of the
eigenmode, Eq. �7�, and using Eq. �1�. This is made rigorous
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by a first-principles approach found in Appendix A which

shows that the equations describing the evolution of 	�, Eq.
�6�, and ��z , t� can be separated with ��z , t� satisfying

� �

�z
+

1

cg

�

�t
���z,t� = −

2�

cP
	 	���r,z� · J�b�r,z,t�e−i�koz−�t�d2r ,

�10�

where P is the power flow given by Eq. �A17� and cg=1
−�p

2 /2�2−4 / �kowch�2 is the group velocity. The integral rep-
resents the energy transfer per unit length between the laser
pulse and electron beam. For low beam currents, the integral
can be neglected and the solution reduces to ��z , t�
=��z−cgt�. This situation has been examined previously
with � chosen as a Gaussian pulse. Inclusion of this integral
allows for the self-consistent treatment of energy transfer,
beam evolution, and laser propagation.

III. LINEAR DISPERSION RELATION FOR �(z , t)

We consider linear perturbations on a relativistic, axially
uniform electron beam with an arbitrary radial profile co-
propagating with a laser pulse. The expressions for the den-
sity and flow velocity are

nb = nb,o�r� + nb,1�r,z,t� , �11�

u�b = vz,oẑ + u�1�r,z,t� . �12�

The spatiotemporal dependence of the first-order quantities
arises from the beam’s electromagnetic response to the laser
pulse. Linearizing the relativistic factor, �, we have

� = �0
1 + �0
2vz,0uz,1

c2 � , �13�

where �0= �1−vz,0
2 /c2�−1/2. We can now find three equations

for the first-order quantities n1, u1,r, and u1,z in terms of the
equilibrium quantities and laser electromagnetic field.

We note that the laser field driving the electron beam

consists of a superposition of waves with wave numbers k�m
=k+mkm, where k=�k�+�k+k0, �k� is the wave number as-
sociated with the superenvelope, �k is the wave-number shift
due to the average plasma channel defined after Eq. �7�, k0
=� /c, and km is the modulation wave number �in this con-
text, the subscript m refers to modulation and not the sum-
mation variable�. Thus, the perturbed beam quantities will
also be superpositions of waves with the same wave num-

bers, nb,1=�mnm exp�i�k�nz−�t�� and u�b,1=�mu�m exp�i�k�mz
−�t��. Which of these amplitudes is important will depend
on the size of the channel density modulation and the value

of the Doppler-shifted frequency, �−k�mvz0. The linearized
equations of continuity and momentum balance then give us
for each wave number

− i�� − k�mvz0�nm = − � �

r � r
�rnb,0ur,m� + ik�mnb,0uz,m� ,

�14�

− i�� − k�mvz0�uz,m =
q

m�0
3Ez,m, �15�

− i�� − k�mvz0�ur,m =
q

m�0

Ez,m −

vz0

c
B�,m� , �16�

where from Eq. �1� we have

B�,m =
k�mc

�
Er,m +

ic

�

�

�r
Ez,m �17�

and Ez,m and Er,m are the amplitudes of the different spatial
harmonics implied by Eq. �7�.

The perturbed current density to be inserted in Eq. �10�
can be expressed in terms for the perturbed beam quantities
as

J�b,1 = q�
m

�nb,0u�m + nmz�vz0�exp�i�k�mz − �t�� . �18�

The fluid equations �14�–�16� can be solved to express the
perturbed current density �18� in terms of the superenvelope
� and the profiles for the radial and axial components of the
mode field, which are common to each spatial harmonic,

ur =
r

wch
exp
−

r2

wch
2 � , �19a�

and

uz =
2c

�wch

1 −

r2

wch
2 �exp
−

r2

wch
2 � . �19b�

Inserting these quantities into the wave equation �10� for the
superenvelope and selecting the component with spatial
wave number k results in the dispersion relation,

c�k − 
�

c
+ �k + �kb�� + �

m

 �MT,m

2

�� − �k + mkm�vz0�

+
�OT,m

3

�� − �k + mkm�vz0�2� = 0, �20�

where

�kb = − � �b
2�r�

2�c�0
ur

2
 , �21a�

�MT,m
2 = Jm

2 �
���b
2�r�
�0

ur
vz,0

�

�uz

�r

 , �21b�

and

�OT,m
3 = Jm

2 �
����b
2�r�

2�0
� uz

2

�0
2 + �vz0

�

duz

dr
�2�
 . �21c�

Here we have defined the beam plasma frequency, �b
2�r�

=4�q2nb,0�r� /me, and an angular bracket around a function f
is defined as �f���d2rf /�d2rur

2 where the integral is taken
over all r. The three terms described by Eqs. �21a�–�21c�
represent the response of the beam. The first term, Eq. �21a�,
represents the wave-number shift due to the radial polariz-
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ability of the electron beam. Note that it is in the same form
as the wave-number shift defined after Eq. �7�. The second
and third terms, which appear over resonant denominators,
describe the bunching of the beam and represent a possible
source of resonant energy exchange between the beam and
the wave. The term �OT,m

3 given by Eq. �21c� is a result of the
perturbed axial current and consists of two contributions.
One is proportional to uz

2 /�0
3, which represents the effect of

axial bunching of the beam. This form of bunching is re-
ferred to at O-type bunching in the vacuum electronics lit-
erature �17�. The second contribution to Eq. �21c� is propor-
tional to �duz /dr�2/�0 and represents a contribution to the
perturbed density from the divergence of the portion of the
radial velocity due to the perturbed magnetic field. �This
term is responsible for the Weibel instability in an aniso-
tropic plasma.� Which of the two contributions to Eq. �21c�
dominates depends on the width of the electron beam and the
value of its relativistic factor. If the beam is so narrow that
all particles can be considered to be on axis, then first term
representing O-type bunching dominates. On the other hand,
if the beam energy is very high, then it is hard to bunch the
beam and the second term dominates. The term given by Eq.
�21b� enters the dispersion relation in the numerator of a
fraction whose denominator is a single power of the
Doppler-shifted frequency as opposed to the case of the term
�21c� where the Doppler-shifted frequency is squared. This is
known as M-type bunching in the vacuum electronics com-
munity. It results from the beam electrons being laterally
deflected in the presence of an inhomogeneous axial electric
field. For the case of a very narrow electron beam, this term
is zero. Note that although we have written Eq. �21b� as the
square of a frequency, actually its sign is undetermined. In
our analysis, we have assumed that the dominant field com-
ponents present are those associated with the electromagnetic
mode of the channel. Thus, we have neglected the space-
charge fields, which are proportional to the beam density and
that are not part of the electromagnetic mode of the modu-
lated plasma channel. Inclusion of these fields will modify
the denominators in Eq. �20�. For example, the denominator
of the O-type term becomes ��− �k+mkm�vz0�2−R�b

2 /�0
3,

where �b
2 represents an average of the beam plasma fre-

quency and R�1 is the space-charge reduction factor �18�
due to the fact that space-charge fields are distributed outside
the beam. The space-charge fields can be negligible if the
Doppler-shifted frequency is large enough.

To analyze the dispersion relation, we refer all frequencies
to the Doppler-shifted beam frequency for the m=1 spatial
harmonic. Further, we keep only the m=1 terms in the sum
on spatial harmonics �this is valid if the electron-beam ve-
locity is nearly matched to the phase velocity of the m=1
spatial harmonic� and we neglect the M-type bunching term
assuming the beam to be narrow. The result is a cubic dis-
persion relation for the Doppler-shifted frequency, �=�
− �k+km�vz0,

��2 − R�b
2/�0

3��� − ��� − �OT,1
3 = 0, �22�

where ��=c�k−�k−�kb�− �k+km�vz0 is the frequency dif-
ference between the electromagnetic mode c�k−�k−�kb� and
the beam Doppler frequency shift �k+km�vz0. In this case, the

dispersion relation �22� reduces to the standard Pierce-type
�19� dispersion relation.

Correspondence to the Pierce dispersion relation is made
clear by considering the ratio of the growth rate to the wave
frequency, defined as the Pierce parameter C, given in Ref.
�19�

�OT,m
3

�3 � C3 =
2�I

IA
0�0
3
 K

377 �
� , �23�

where 
0=vz0 /c, we assume ��kc, IA=mec
3 /q, which has a

value of 1.7�104 A when expressed in SI, and � in Eq.
�23� refers to Ohms. The quantity K is known as the coupling
impedance and is defined in SI as

K =
�Ez,1�0��2

2k2P
, �24�

where P is the power in the wave and �Ez,1�0�� is the on-axis,
axial electric field magnitude of the resonant spatial har-
monic. The coupling impedance here is defined for the case
of a narrow beam where only the first contribution to �OT,1
in Eq. �21c� is important. In terms of the field structure de-
fined in Eq. �19�, the impedance is given by

K

377 �
=

J1
2�
��uz�0��2

k2�0
�2�rdrur

2 . �25�

The effect of space charge is characterized by the parameter
Q defined as follows:

R�b
2

k2c2�0
3 � 4QC3. �26�

The solutions of the dispersion relation �22� depend on
the frequency shift ��, the O-Type bunching frequency
�OT,1, and the beam space-charge frequency, �R�b

2 /�0
3. Two

regimes are of interest—strong and weak space charges. In
the case of weak space charge R�b

2 /�0
3��OT,1

2 , the maximum
growth occurs for zero-frequency shift and the three solu-
tions are given by

� = �OT,1�1, ei2�/3, e−i2�/3� . �27�

Of these, the middle one is unstable, with a growth rate
Im���=�3�OT,1 /2 and a frequency Re���=−�OT,1 /2. The
negative sign to the Doppler shifted frequency indicates that
the beam speed is slightly greater than the phase velocity of
the wave being amplified. This is consistent with the picture
of the instability as a process in which the beam speed is
lowered to the phase velocity of the wave as energy is trans-
ferred from the beam to the wave and the wave grows. The
range of frequency shifts for which the waves are unstable
can be determined in the weak space-charge case to be ��
�−3�OT,1 /22/3. The dependence of the frequency shift on
wave number is similar to that of a free-electron laser. In
particular, there will be either two wave numbers giving
zero-frequency shift or none. These wave numbers corre-
spond to points where the dispersion curves for the beam
mode and electromagnetic mode cross in the � vs k plane.
The intersection points may be found from the quadratic
equation
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���k� = ck +
�c

2

2ck
− �k + km�vz0 = 0, �28�

where �c
2=�p0

2 +8c2 /wch
2 + ��b

2ur
2 /�0� is the square of the ef-

fective cutoff frequency for the electromagnetic mode in-
cluding contributions from the plasma, the channel, and the
beam. In Eq. �28�, we have replaced � by ck in the defini-
tions of the wave-number shifts �k, �kb appearing in Eq.
�22�. This applies for frequencies well above the cutoff fre-
quency. Solving for the intersection points, we have
���k��=0, where

k� =
km
0

2�1 − 
0�
�1 ��1 −

4�c
2�1 − 
0�

�kmc
0�2 � . �29�

There are no intersection points in cases in which the radical
is imaginary.

In the case of strong space charge R�b
2 /�0

3��OT,1
2 , the

maximum growth occurs when the frequency shift coincides
with the slow space-charge wave, ��=−�R�b

2 /�0
3. In this

case, the dispersion relation can be approximated as

− 2�R�b
2/�0

3�� + �R�b
2/�0

3��� − ��� − �OT,1
3 = 0. �30�

Thus, two of the three solutions of Eq. �22� are described by

� = − �R�b
2/�0

3 � i���OT.1
3 /2�/�R�b

2/�0
3�1/2. �31�

The third solution in this case is a stable beam plasma oscil-
lation �=�R�b

2 /�0
3. In the strong space-charge case, insta-

bility is present only for a range of wave numbers satisfying
����k�+�R�b

2 /�0
3�� �2�OT.1

3 /�R�b
2 /�0

3�1/2.
We consider the following parameters: matched beam

width of wch=15 �m, on-axis plasma density no=7
�1018 cm−3, corrugation amplitude �=0.9, and a modula-
tion period of Tm=0.035 cm. For these, the lower intersec-
tion given by Eq. �25� corresponds to a vacuum wavelength
�=800 nm. Calculation of the impedance results in K
=1.53�10−6 �. We then consider two different beam den-
sities: nb=3�1016 and 3�1018 cm−3. The beam radius, �b,
is taken to be 1 �m and beam energy corresponding to �0
=100. The two values of beam current are then 4.5 and 4.5
�102 A. The values of the beam plasma frequency �Q

=�R�b
2 /�0

3 in the two cases are 9.8�109 and 9.8
�1010 s−1 �here we assume R=1�. The values of �OT,1 in the
two cases are 4.3�109 and 2�1010 s−1. Thus, the strong
space-charge result is more appropriate, although the lower
density is near the boundary separating the strong and weak
space-charge regimes. Using the strong space-charge for-
mula, we arrive at growth rates of 1.0�109 and 6.4
�109 s−1, respectively, in the two cases. These growth rates
correspond to growth lengths of 15.0 and 4.7 cm, which are
longer than existing channels, �1.5 cm� but not by a large
factor.

The analysis above provides a basic understanding of the
linear electron beam–laser pulse interaction. The time scale
for an initially unmodulated beam, in the presence of a weak
injected radiation pulse, to develop modulations at the radia-
tion frequency is the inverse of the growth rate given by
either Eq. �27� or �31�. As the modulations grow, energy is
extracted from the beam, the beam slows down, and the ra-

diation pulse amplitude grows. The process saturates when
the beam velocity moves out of resonance with the wave.
The change in beam speed �vz accompanying the saturation
process can be estimated from the growth rate as
�k+km��vz=Im���. At this point, the beam will have trans-
ferred an amount of power

PS � �I/q�
me�0

3vz0 Im���
k

, �32�

where I is the beam current and we have assumed k�km.
This power level defines a reference level for cases in which
the beam interacts with an injected laser pulse. If the injected
laser-pulse power is below the level PS, then modulation of
the beam will occur on the linear time scale. If the injected
pulse power is above the level PS, then the laser electric field
amplitude can be considered constant during the modulation
process. We calculate from Eq. �31� Ps=2.0�106 and
6.3�108 W in the two cases under consideration.

We note that if the injected power is high enough space-
charge fields at the laser frequency can be neglected com-
pletely. The axial field of the laser pulse will cause the beam
to bunch in a characteristic time �NL given by

�NL
−2 =

qk�Ez,1�
m�0

3 =
qk2�2KP

m�0
3 . �33�

If this bunching time is shorter than the beam plasma fre-
quency, then space-charge debunching will be overcome by
the laser field. We find that this is the case if P�1.0�1011

or P�1.0�1012 W in the two example cases. For the pa-
rameters that we consider in the remainder of the paper, P
�1�1012. We will assume that the quasi-phase-matched
axial component of the laser field is strong enough to domi-
nate the debunching space-charge fields.

IV. BEAM DRIVEN WAKEFIELDS IN QUASI-PHASE-
MATCHED ACCELERATION

The space-charge forces of the beam can also drive wake-
fields in the background plasma channel. For narrow beams
considered here �the beam does not experience the transverse
variation in the plasma channel� and noting that km�kp, the
channel appears spatially uniform to the beam. Su et al. �20�
and others �21,22� provided expressions for the wakefields
generated by quadratic beams in uniform channels. For a
beam density profile nb�r�=nb,0�1−r2 /�b

2� for r��b and
zero otherwise, the wakefields are

Ez = 8�qnb,0�K2�kp�b�I0�kpr� +
1

2

1 −

r2

�b
2� −

2

�kp�b�2�
�	

0

�

d��f����cos�kp�� − ���� , �34�
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E� = 8�qnb,0�K2�kp�b�I1�kpr� −
r

kp�b
2�

�	
0

�

d��f����sin�kp�� − ���� . �35�

With the expressions above, we can approximate the magni-
tude of the electric field due to a Gaussian beam profile. For
a uniform beams with �b on the order of the plasma wave-
length, we can approximate the maximum fields �which oc-
cur at different radii for the axial and transverse fields� as
follows: qEz /mc�p��2�z /��re�p

2nb,0 and qE� /mc�p
��2�� /��re�p

2nb,0, where re is the classical electron radius
and �z and �� are numerical factors of order 1. For a chan-
nel density of 7�1018 cm−3 and beam density of 1
�1018 cm−3, we find qE /mc�p�3�10−4, which suggests
that ignoring the reaction of the channel to the beam is rea-
sonable. We now focus on the effect of depletion of the laser
field due to acceleration of the electron beam.

V. SELF-CONSISTENT SIMULATION OF BEAM-PULSE
INTERACTION

For simulating the interaction of a relativistic beam with
the short-pulse laser, we numerically solve Eq. �6� for the
density profile in Eq. �3� from z=−20RL to 20RL, where RL is
the Rayleigh length defined as RL=�wch

2 /�0 �20RL is the
physical length of the corrugated plasma channel �1.8 cm�.
Because the radial solutions of Eq. �6� are known to be

2−�H2n+1�r /wch�e−r2/wch
2

, where Hn is the nth Hermite polyno-
mial, Eq. �6� only needs to be integrated axially and 	r grided
axially. Here we only consider propagation of the lowest
radial eigenmode �this simplification is discussed further in
Appendix B�. For the density profile considered here, Eq.
�3�, an analytic solution for the axial dependence exists, Eq.
�7�, but the simulation is written to handle arbitrary axial
dependence of the plasma density. The channel and laser
parameters are the same used in our analysis of the linear
dispersion relation, which has the phase velocity of the n
=1 spatial harmonic set to c.

The pulse is initiated as a Gaussian with temporal width
�t centered about z=0 with a full width half maximum of
�4�t

2 loge�2��1/2=500 fs. The electron beam is initiated as an
axially uniform beam extending from z=−3c�t to 3c�t with
a Gaussian radial profile of width �b. Each electron starts
with an energy of �0=100. To reduce numerical noise, the
simulation particles are initially placed with uniform axial
separation and Gaussian separation in radius. Gaussian radial
separation entails placing the nth particle at the radii, rn,
defined as follows:

	
0

rn

e−r2/�b
2
d2r = ��b

2
 n

Nr
� , �36�

where Nr is the number of radial positions. For the param-
eters considered here, 104 axial positions and Nr=10 are suf-
ficient to eliminate particle noise �Nsim=105 total simulation
particles�.

At each time step, the three-dimensional electron equa-
tions of motion are solved for the position x� and momentum
p� ,

dp�

dt
= 2q Re���z,t�ei�k0z−�t�
	��r,z� +

p�

�me
�
� �r,z��� ,

�37�

dx�

dt
=

p�

�me
. �38�

The phase, �k0z−�t�, is evaluated explicitly. The spatial
phase is well resolved; there are �15 simulation particles per
laser wavelength. The temporal phase, �t, is not resolved by
the time step, but the effective temporal phase, ��−vz0k0�t, is
well resolved. With the generalized coordinates, the current
density can be calculated

J�b�r,z,t� =
q�

2�me
�
part.

p� i�t�
�i�t�ri�t�

��r − ri�t����z − zi�t�� ,

�39�

where �=�nb�r ,z , t�d2r /Nsim converts the simulated beam
density to the appropriate physical density. Inserting Eq. �39�
into Eq. �10�, we find

� �

�z
+

1

cg

�

�t
�� = −

2�q�

cP
ei�t �

part.
	���ri,zi�v� i�t�e−ik0zi.

�40�

Because we have already grided 	� axially and we know the
radial dependence, the current density is never placed on a
numerical grid for calculating the right-hand side of Eq. �40�.
This property reduces both the noise and computation time
of the simulation. With the current source determined, Eq.
�40� is solved in a window traveling at cg that extends
−10c�t to 10c�t about the center of the pulse. At each time
step, the process is repeated with the time step, �t, chosen to
satisfy the Courant condition of �z /c�t�3 /4 for a chosen
spatial step, �z.

We consider two densities nb=3�1016 cm−3 and 3
�1018 cm−3, which we propagate over 3.6 cm, twice the
channel length corresponding to Ref. �15�. As discussed in
Sec. II, this distance is shorter than the distance required for
linear space-charge instabilities develop, which cannot be ex-
amined with our self-consistent simulation. We also note that
3.6 cm is about the pulse length dephasing length �there can-
not be pump depletion if the electron beam and laser pulse
do not overlap�. For each beam density, we consider two
beam widths: �b=1 �m and �b=3 �m, corresponding to
total beam charges of �26 and 230 pC for nb=3
�1016 cm−3 and �2.6 and 23 nC for nb=3�1018 cm−3,
respectively.

Figure 1 shows the pulse evolution in a frame moving at
cg our four cases. For both beam widths pump depletion was
negligible until the total beam charge exceeded 10 nC; there
is visible narrowing and drop in the envelope’s amplitude for
the 23 nC beam. In Fig. 2, the pulse energy as a function of
time demonstrates that significant absorption of the 23 nC
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pulse has occurred by 20 ps. A simple scaling for the time
scale over which pump depletion occurs can be obtained by
approximating the sum in Eq. �40� by

�
part.

	���ri,zi�v� i�t�e−ik0zi � 2Nb
mec
2

q
�wch

−1J1�
�a0, �41�

which assumes all the electrons are properly phased for ac-
celeration and near the peak of radial profile of the axial
field. The scaling for the depletion time is then

�d

T0
�

a0

16�
J1

−1�
��k0wch�3
Lb

re
�Nb

−1, �42�

where T0 is the laser period, re=q2 /mec is the classical elec-
tron radius, Lb is the beam length, and Nb is the number of
beam electrons. For a 23 nC beam, Eq. �42� gives �d
=90 ps, close to value found in the simulation, 0.3J�1
− t /�d��0.23J. After 20 ps, the beam moves into a lower
amplitude section of the pulse and is no longer within the
separatrix of the laser field. The beam and pulse then ex-
change energy in a cyclic manner. For higher beam charges,
which may make the space-charge approximations marginal,
the beam and pulse can undergo significant energy exchange,
with the pulse losing almost all of its energy in certain axial
regions and regaining it later in other axial regions. Because

the depletion time scales inversely with the number of beam
electrons, currently realizable beam charges, �1 nC, are far
from causing pump depletion in currently realizable wave-
guide limited durations, �135 ps �4 cm�.

From Ref. �13�, the condition for space-charge forces to
overcome the axial accelerating field is given as

nb�cm−3� �
3.6 � 1012

�1 + �p
2/�2wch

2 �
�ao�wch�o�−1�cm−2� , �43�

which for parameters considered here is nb,0�6.3
�1018 cm−3. This density is greater than the densities con-
sidered here. We can then conclude that for the beams con-
sidered here, space-charge limitations on the electron beam
will become important before pump depletion of the laser
pulse. However, because pump depletion scales with the
number of electrons in the beam and not the beam density,
pump depletion may become important before space charge
for large beam widths. For example, at nb,0=3.2
�1017 cm−3, �b=10 �m gives �8 nC and a �b=30 �m
gives �80 nC.

Although our simulations of the nb,0=3.0�1018 cm−3

beam are close to the space-charge threshold for the beam
widths considered, Eq. �43� overestimates the effect of space
charge. Equation �43� assumes that the electrons have
bunched into �-function slabs axially, but the actual density
is not so localized. To examine the axial localization of the
electron beam, we define the bunching parameter

G�t� � � 1

Nb
�
i=1

Nb

eik0zi�t��2

. �44�

When G�t�=1, the electron density can be considered axially
periodic �-function slabs where Eq. �43� holds; when G�t�
=0, the electrons are uniformly distributed axially and the
axial space-charge force for a long beam becomes negligible.
Figures 3�a� and 3�b� show G�t� for the 1 and 3 �m beams,
respectively. The maximum for both beams is G�t��0.3; Eq.
�43� provides a conservative estimate on the axial space-
charge limitation of the beam. The importance of radial
space-charge effects was already discussed in Sec. II.

From Fig. 2, we see that the electron beam stops gaining
energy before 120 ps; the rest of our results will examine
effects occurring at 60 ps, half the pulse length dephasing
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FIG. 1. �Color online� The evolution of the longitudinal pulse
envelope over 120 ps for two different electron-beam densities char:
3�1016 and 3�1018 cm−3 and two different beam widths �b

=1 �m and �b=3 �m.
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respectively.
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time. Figure 4 depicts the log of the number averaged axial
beam density for the 1 and 3 �m beams normalized to the
initial on-axis density at the three different beam charges.
The normalized densities are plotted as a function of final
transverse and axial position in the laser frame coordinate,
z−cgt. For the 1 �m beam, there is not much change in the
density as the charge is increased from 26 pC to 2.6 nC. The
3 �m beam follows the same trend as the 1 �m as the
charge is increased. The 3 �m beam, however, has much
less density on axis. The reduction in on-axis density occurs
due to two effects of electrons initiated at larger radii: a
larger quasi-phase-matched focusing/defocusing force and
the reduced axial field at larger radii. The large quasi-phase-
matched defocusing overcomes the increased ponderomotive
focusing from the m=0 spatial harmonic for larger radii.

In addition, both the 1 and 3 �m beams display a charge
piling behind and in front of the pulse. Figure 5 shows the
on-axis normalized density profile for the 230 pC, 3 �m
beam in solid. The pulse shape is also plotted as a reference.
As demonstrated in Appendix C, the charge piling is not the
result of the axial ponderomotive force of the pulse from the
m=0. The charge piling is actually the result of the focusing
force of the laser. In our previous work �13�, we derived the
time scale for focusing and defocusing of the beam due to
the laser field

� � 
2�

�0
��5/3� �k0wch��k0�p��km�p�

4�5�a0
�1/3

. �45�

For the parameters considered here and using a0�z−cgt� cor-
responding to where the charge piling occurs, we find �
�50 ps. As time increases, we expect to see the charge pil-
ing move along the axis away from the peak of the pulse.

As the beam charge is increased, the electron beam be-
comes axially modulated. We note that these modulations are
insensitive to numerical parameters �i.e., spatiotemporal step
size and particle number�. Furthermore, the modulation
wavelengths are not consistent with any other longitudinal
scale in the problem and are too short to be explained by
linear instability. The origin of the modulations is a secular
growth of a density perturbation at the left and right edges of
the electron beam. This effect is discussed in detail in Ap-
pendix D.

Figure 6 shows the number averaged momentum of the 1
and 3 �m electron beams after traveling 1.8 cm, half the
pulse length dephasing distance. The axial momentum re-
mains well confined on axis for both the 1 and 3 �m elec-
tron beams. As discussed previously, the low energy beam
electrons scatter to large radii. The 3 �m beam has a larger
transverse spread in momentum than the 1 �m beam. More
of the properly phased electrons in the 3 �m beam sit at
larger radii and experience a larger transverse quasi-phase-
matched force. Half of the accelerating phase is initially de-
focused and the 3 �m beam acquires a larger transverse
momentum spread. The maximum in the average momentum
is similar for all four cases, suggesting that the electron beam
gains most of its energy in the first 20 ps as demonstrated by
Fig. 2.

Comparisons of the 1 and 3 �m electron beams at ne
=3�1018 cm−3 are depicted as the solid and dotted lines,
respectively, in Fig. 7. The transversely averaged momentum
as a function of axial distance is displayed in Fig. 7�a�. The
high-energy component of the beam is centered about the
peak of the laser pulse. The average energy is higher and
more concentrated axially for the 1 �m beam. Figure 7�b�
shows the axially averaged axial momentum as a function of
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transverse coordinate. The axial momentum of the 1 �m
beam is larger and stays more confined on axis. The beam
divergence is plotted in Fig. 7�c�. As expected, the 1 �m
beam divergence is lower. The divergence is also slightly
higher for both beams behind the peak of the laser pulse.
Comparing to Fig. 7�a�, we see that this is due to an increase
in the transverse momentum and not a decrease in the axial
momentum. One explanation for the asymmetry can be ex-
plained by a slight difference in the pulse amplitude for elec-
trons starting to the left and right of the peak of the pulse. In
particular, for a particle starting at z0, where distance is mea-
sured from the peak of the pulse,

��z,t� = exp�− 
 ��k�
k0

ct + z0�2

�c�t�−2� . �46�

From Eq. �46�, we see that ��z0�0, t����z0�0, t�, thus the
quasi-phase-matched defocusing force is larger for electrons
starting behind the pulse than for those starting in front.

VI. PULSE AMPLIFICATION

As an inverse process to acceleration, it is possible to
amplify the laser pulse via the deacceleration of electrons in
the laser’s field. To demonstrate this, we consider a periodic
prebunched electron beam with a � function radial profile

Jb,z�r,z� � qc��b
2�onb,o �

�=−L

L
�2�r���z − vz,0t − ��o�

2�r
.

�47�

Upon inserting Eq. �47� into Eq. �10�, we have the following
expression for �:

��

��
= − �

c

wch
�
m

imJm�
��1 + �
�=1

�

2 cos�k0��� − �v����
�e−i�ko+mkm+�k��−imcgkm�, �48�

where �=2a0
−1��p,b /��2��b /wch�2, �v=vz0−cg, and we have

switched to the pulse frame coordinate with �=z−cgt and
�= t. Equation �48� also assumes the beam is long compared
to the pulse length. Integrating over � yields

� = − �
c

wch
�

n

in+1Jn�
�� 1

ncgkm
+ �

�=1

�
e�ik0���−�v��

ncgkm � ��vk0
�

�e−i�ko+nkm+�k��−incgkm� + ���,0� . �49�

When the resonance condition, mcgkm���vk0=0, is satis-
fied, secular growth of the laser pulse occurs. The resonance
condition provides the initial velocity that will maximize the
pulse amplification. In particular, if we want to utilize the
large relative amplitude of the m=1 spatial harmonic �the
m=0 cannot be resonant�, we have that m=� and vz0=vp,1
where vp,1 is the phase velocity of the m=1 harmonic. In-
voking the resonance condition and dropping nonresonant
terms, we find

� = 2��
c

wch
�
m=1

imJm�
�exp
− i� k0

2�0
2 + �m − 1�km���

+ ���,0� . �50�

The m=1 spatial harmonic is essentially constant over the
entire pulse frame coordinate, �=2�0

2�0�1.6 cm, and the
amplitude of the other harmonics drops rapidly with increas-
ing n. The time constant for secular growth of the pulse is
then �amp��d, where �d is given by Eq. �42�. This is ex-
pected as our calculation for the depletion time assumed all
the electrons were in the accelerating phase as opposed to the
deaccelerating phase.

We note that �amp depends on the number of beam elec-
trons, but is independent of the electron energy, a conse-
quence of our assumption that the beam velocity was con-
stant. In actuality, as the electrons slow down, the resonance
condition acquires a velocity detuning that begins to limit the
energy gain of the pulse. Higher energy electrons can trans-
fer more energy to the pulse before velocity detuning be-
comes appreciable �� depends sensitively on v at relativistic
energies�.

With current technology, it is much easier to create high-
energy short laser pulses than it is to create bunched high-
energy electron beams—one of the motivations of laser-
plasma accelerators. Even if a high-energy, high-density
electron beam could be created �perhaps from ultrahigh in-
tensity laser–solid interactions�, a second laser with
��1 /4�0 would be required to bunch the electron beam
before injection. Furthermore, our space-charge limitation
for bunched beams, Eq. �43�, limits the number of electrons
that can be placed in the large deaccelerating region of the
field. To overcome this limitation, one could imagine coac-
celerating electrons and protons �or even positrons� in alter-
nating half phases, but again this is far beyond current capa-
bilities. We thus stipulate that our analysis and simulations of
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FIG. 7. �Color online� Comparison of the 1 and 3 �m electron
beams at ne=3�1018 cm−3; the solid and dotted lines, respectively.
�a� The transverse averaged axial momentum as a function of laser
frame coordinate. �b� The axial averaged axial momentum as a
function of transverse coordinate. �c� The beam divergence as a
function of laser frame coordinate.
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pulse amplification are meant as a demonstration of a prin-
ciple and not as a proposal of an application.

Here we consider an injected electron beam with 2.1 nC
at 1 GeV: a total beam energy of 2.1 J. The electrons are
distributed uniformly into 1 /4�0 long bunches with each
bunch spaced by �0. The beam extends axially from −8 to
8 �m about the peak of the pulse and distributed as a Gauss-
ian radially with a width of 9 �m. If the beams were uni-
form, the density would be nb,0=3.2�1018 cm−3, close to
our space-charge limitation; the initial localization parameter
for the beam is G�t�=0.9. The laser and channel parameters
are the same as the simulations presented in the previous
section; the total initial laser energy is 300 mJ. We consider
propagation over 120 ps �twice the time of the simulations in
the previous section� or �3.6 cm.

To provide intuition into the structure of the beam, we
plot one electron bunch as a function of transverse coordi-
nate and axial distance after 120 ps in Fig. 8 �one dot is one
simulation electron�. Figure 9�a� shows the initial longitudi-
nal pulse shape �dotted line� and the pulse shape after 120 ps;
the pulse has acquired energy from the electron beam. In Fig.
9�b�, the pulse energy �dashed� and beam energy �dotted� are
plotted as a function of time on the left axis. The pulse al-
most doubles in energy. The initial energy gain of the pulse
grows linearly as predicted by Eq. �50�. After �40 ps, the

energy gain slows down as the beam begins to outrun the
pulse, moving into the lower amplitude region of the pulse.
The right axis of Fig. 9�b� depicts the pulse width as a func-
tion of time. The pulse gets initially shorter due to amplifi-
cation only where the beam overlaps the pulse. The pulse
length begins to go up again after �40 ps due to the beam
beginning to amplify in the initially small amplitude region
of the pulse.

VII. SUMMARY AND CONCLUSIONS

As previously demonstrated �13�, the corrugated plasma
channel allows for the guiding of modes composed of slow
wave spatial harmonics that can be phase matched to relativ-
istic electron beams. Here we have analyzed and simulated
the self-consistent interaction of a short-pulse laser and rela-
tivistic electron beam in a corrugated plasma channel. The
effect of beam loading on the laser pulse and beam evolution
was captured by separating the evolution of the pulse’s phase
and transverse profile from the evolution of the longitudinal
envelope. The background plasma determines the laser’s
phase, whereas the longitudinal pulse profile evolved in re-
sponse to the presence of the electron beam. The background
plasma was chosen to model experimental density profiles
�15�, while also providing an analytic solution for the guided
mode’s phase. The laser and plasma parameters were chosen
in correspondence with current experiments and the electron-
beam parameters were varied.

A linear dispersion relation was derived for the longitudi-
nal pulse profile in the presence of an electron-beam phase
matched to the m=1 spatial harmonic of the guided mode.
The electron beam considered was infinite in axial extent
with an arbitrary radial profile. The dispersion relation in-
cluded the effects of both the longitudinal and transverse
motions of the electron beam in the laser field. Observing
that the dispersion relation should reduce to an electrostatic
beam dispersion relation in the absence of the laser field
allowed for inclusion of space-charge effects. The electron
beams considered were narrow with respect to the field pro-
file and were analyzed in the O-type bunching limit of the
dispersion relation. For the parameters considered, the elec-
tron beam was on the boundary of the strong and weak
space-charge limits, but in both cases the instability growth
lengths were shown to be much longer than currently exist-
ing plasma waveguides. The beam instabilities may be im-
portant, however, for smaller field amplitudes or higher beam
densities and energies.

To simulate the self-consistent beam-pulse interaction, the
phase of the laser due to the background plasma, which is
independent of time, was calculated initially. The evolution
of the longitudinal pulse shape and the equations of motion
of the beam electrons, which determined the beam current,
were iterated in time. By utilizing the transverse enveloping
of the electromagnetic field, simulation particles were only
interpolated onto an axial grid. This property allowed for a
savings in both simulation time and noise.

We considered two beam widths, 1 and 3 �m, and two
beam densities, 3�1016 and 3�1018 cm−3. Depletion of
the laser pulse was only significant for the 3 �m beam at

FIG. 8. �Color online� Quarter wavelength electron bunch after
120 ps as a function of transverse coordinate and beam frame co-
ordinate. The beam is traveling from right to left and each point is
one simulation particle.
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FIG. 9. �Color online� �a� Initial longitudinal pulse shape and
pulse shape after 120 ps �the dotted and solid lines, respectively� as
a function of laser frame coordinate. �b� The beam energy �dotted�
and pulse energy �dashed� on the left axis. The pulse width �solid� is
plotted on the right axis.
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3�1018 cm−3. As expected, the depletion occurs only while
the beam overlaps the pulse. There was essentially no differ-
ence in the beam quality when the density was changed. We
then concluded that over current wave-guided length limited
times, �60 ps, space-charge effects should become impor-
tant before pulse depletion for the beams considered. How-
ever, because the time scale for pump depletion scales with
the number of electrons and not the beam density, pump
depletion may become more important for wider beams at
similar densities.

The simulations also revealed two phenomena of the
beam-pulse interaction: piling of the beam charge and axial
asymmetry of the beam divergence. The charge piling was a
result of laser focusing field pushing electrons inward. Be-
cause the time scale of this process is inversely proportional
to the field amplitude, electrons starting at a larger axial dis-
tance from the peak of the pulse converge on axis at different
times. This process sets up a charge pile on axes both trailing
and leading the pulse. The axial asymmetry of the beam
divergence arises from the relative motions of the electron
beam and laser pulse, which produce an axial asymmetry in
the quasi-phase-matched focusing-defocusing force.

We have also demonstrated that a properly phased elec-
tron beam can transfer energy to the pulse as an inverse
process to acceleration. Because the energy transfer takes
places locally �wherever the electron beam is�, the shape of
the resulting pulse is sensitive to where the electron beam
starts and to the velocity mismatch between the beam and the
group velocity of the laser. Charge and energy limitations on
currently achievable electron beams make this phenomenon
unfeasible for applications.
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APPENDIX A: SEPARATION OF PROPAGATION
EQUATIONS

To demonstrate the separability of Eqs. �6� and �10� for 	
and �, respectively, we start with the generalized electro-
magnetic wave equations

� � � � E� +
1

c2

�2

�t2E� = −
4�

c2 
 �J�p

�t
+

�J�b

�t
� , �A1�

� � � � B� +
1

c2

�2

�t2B� =
4�

c
� � �J�p + J�b� , �A2�

where J�p and J�b are the background plasma and electron-
beam currents, respectively. Upon inserting Eqs. �4� and �5�
into Eqs. �A1� and �A2�, respectively, we find

�D1F� +
��

�z
D2F� −

��

�t

2ik0

c
�F� = −

4�

c2 e−i�

�� �

�t
− i� − c��+ ik0ẑ���J�b, �A3�

where all the spatiotemporal derivatives are now slow de-

rivatives �d /dz�k0 and d /dt���, we have defined F�

��	r ,
� ,	z�, the Di are given by

D1 = ��+ ik0ẑ� � �� � � − ik0
 �

�z
+

i

c

�p
2

�
− ik0ẑẑ·− ẑ� ·� ,

�A4�

D2 = ẑ � �� � � − 
 �

�z
+ 2ik0 − 2ik0ẑẑ·− ẑ� ·� , �A5�

and we have defined ���k0z−�t�. Thus far, we have only
assumed that the background plasma responds linearly and
nonrelativistically to the laser electric field �this is consistent
with our parameters of interest, qE0 /�mec�0.25� and we
have dropped higher-order derivatives of z and t which may
contribute to group-velocity dispersion over long propaga-
tion distances, �wch

4 /�0
3. Taking the vector component of Eq.

�A4�, we obtain the following:

r̂ · D1	� = − ��r
2 −

1

r2 + 2ik0
�

�z
−

�p
2

c2 �	r +
�

�r
� · 	� + ik0

�

�r
	z,

�A6�

ẑ · D1	� = − ��r
2 + k0

2 + ik0
�

�z
−

�p
2

c2 �	z + �ik0 +
�

�z
� � · 	� ,

�A7�

�̂ · D1
�̂ = − ��r
2 −

1

r2 + 2ik0
�

�z
−

�p
2

c2 �
 . �A8�

Using the fact that � and k0 provide the fastest time and
space scales, respectively, we can write

� · 	� = −
��

�
· 	� − ik0	z + 
4�q

��
�e−i�nb. �A9�

Plugging Eq. �A9� into Eqs. �A5� and �A6�, keeping terms to
lowest order in �p

2 /�2, we have

r̂ · D1	� = − ��r
2 −

1

r2 + 2ik0
�

�z
−

�p
2

c2 �	r + 
4�q

�
�e−i��nb

�r
,

�A10�

ẑ · D1	� = − ��r
2 + 2ik0

�

�z
−

�p
2

c2 �	z

+ 
4�q

�
�
ik0 +

�

�z
�e−i�nb. �A11�

We can find similar expressions for components of D2 as
follows:
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r̂ · D2	� =
�

�r
	z − 2�ik0 +

�

�z
�	r, �A12�

ẑ · D2	� = � · �r̂	r� , �A13�

�̂ · D2
�̂ = − 2�ik0 +
�

�z
�
 , �A14�

and we note that D2 includes off diagonal terms that couple
the three-field components.

Rewriting Eq. �A3� we have that

�W�� F� +
��

�z
D2F� −

��

�t

2ik0

c
�F� = −

4�

c2 e−i�

���J�b + qc2��+ ik0ẑ�nb� , �A15�

where we have defined

� �
�

�t
− i� − c���+ ik0ẑ��� ,

and the tensor W�� has diagonal elements given by the coeffi-
cients of 	r, 	z, and 
 on the right-hand side of Eqs.
�A6�–�A8�, respectively. We now divide Eq. �A15� by �,

multiply by F� �, subtract the conjugate of Eq. �A15�, multi-

plied by F� , and integrate over the transverse area. The result-
ing coefficients are

	 �	��W�� 	� + 
�D3
 − c.c.�d2r = 0 �A16�

	 �	��D2	� + 
�D2
�d2r � − 2ik0	 �
�	r + 
	r
��d2r ,

�A17�

2ik0

c
	 ��	��2 + �
�2�d2r = 4ik0U , �A18�

where we have used �p
2 /�2�1, d /dz�k0, and U is the elec-

tromagnetic field energy. From Eq. �A17�, we have the fol-
lowing:

− 2ik0	 �
�	r + 
	r
��d2r = − 4ik0P . �A19�

Noting that c /cg=U / P �23� and defining  ��� /�z
+cg

−1� /�t�, we have

 � = − i
�

�cP
	 e−i�F� � · ��J�b + qc2��+ ik0ẑ�nb�d2r .

�A20�

Using the fact that d /dz�k0 and d /dt�� and keeping
lowest-order terms, we find

�J�b + qc2��+ ik0ẑ�nb � − 2i�Jrr̂ + c��̂ + r̂�
�

�r
Jz.

�A21�

Upon integrating 
�
��Jz /�r by parts and using 
�

��	r
� and

� · �r̂	r
��� ik0	z

�,

�J�b + qc2��+ ik0ẑ�nb � − 2i��Jrr̂ + Jzẑ� , �A22�

where the equality only holds under the integral in Eq.
�A20�. Finally, we arrive at the equation describing the evo-
lution of the longitudinal pulse shape in the presence of a
relativistic beam current

� �

�z
+

1

cg

�

�t
�� = −

2�

cP
	 e−i�k0z−�t�	�� · J�bd2r . �A23�

The longitudinal evolution, Eq. �A23�, has been separated
from the phase and transverse evolution of the electromag-

netic field, W�� 	� =0.
In arriving at Eq. �A23�, we have assumed that �p

2 /�2

�1, qE0 /�mec�1, d /dz�k0, and d /dt��. All of these in-
equalities are well satisfied in our parameter region of inter-
est. Whereas the first two conditions are typically satisfied
for laser-based accelerators, future studies may require relax-
ation of the requirement on the field amplitude, necessitating
a more rigorous treatment of the plasma current. Because the
energy gain in quasi-phase-matched acceleration scales lin-
early with the pulse length, pulses on the order of laser pe-
riod are not of interest here. Other applications may require
these pulse durations and cannot be modeled under the as-
sumptions made here.

APPENDIX B: DISCUSSION OF SINGLE RADIAL MODE
ASSUMPTION

To consider coupling of multiple radial eigenmodes
through the beam current, we start with the generalized radial
electric field in the plasma channel

Er�r,z,t� = �
�,odd

2−����z,t�H��r/wch�e−r2/wch
2 +i���z,t�,

�B1�

where ���z . t�= �k0+�k��z+
 cos�kmz�−�t and �k�=
−��p

2 /2�2+4� /k0
2wch

2 �.
The multimode generalization of Eq. �10� can then be

written as

� �

�z
+

1

cg,�

�

�t
��� = −

2�

cP�
	 e−i�k0z−�t�	��

� · J�bd2r , �B2�

where cg,�=c�1−�p
2 /2�2−4� /k0

2wch
2 � and P� are the general-

ized group velocity and power, respectively, and the orthogo-
nality property of the radial functions has been used. The
beam current coupling allows transfer of energy between the
radial modes; the electromagnetic forces from all modes de-
termine the electron’s velocity. The radial profile of the elec-
tron beam changes in response to the laser field. If the pro-
jection of the beam’s radial profile onto the radial profile of a
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given eigenmode becomes significant, the beam can deplete
or pump this mode, depending on the phase of the contrib-
uting electrons.

For an incident laser pulse, where the incident radial pro-
file is well approximated by the lowest radial eigenmode of
the channel, very little of the energy will be contained in the
higher-order eigenmodes. For 100% coupling efficiency to
the plasma channel, the relative amplitudes of the waveguide
modes can be determined from

	� =
1

�2�+1	 Ei,r�r�H��r/wch�e−r2/wch
2

d2r , �B3�

where Ei,r�r� is the incident radial profile of the laser. If 	1
�	��1, the contribution of the modes with ��1 can be ne-
glected altogether.

Even if 	1�	��1 is marginally satisfied, the beam current
coupling to the ��1 will be weak due the rapidly varying
phase of these modes in the beam frame. The contribution of
electrons based on their phase can be determined by consid-
ering the initial phase matching conditions. If the initial
phase velocity of the �m ,��= �1,1� spatial harmonic is set to
c ��k1+km=0� and we know that this mode responds
strongly to an electron beam with vz0=c�1−1 /2�0

2�, the con-
dition for weaker response can be written as

�0
2��p

2

�2 �m − 1� −
8

�k0wch�2 �m − ��� ! 1. �B4�

For modes that satisfy the above inequality, the energy will
typically oscillate between the beam and the mode, but no
long-time net energy transfer would occur. The left-hand side
of Eq. �B4� is plotted in Fig. 10 for the parameters used here.
The color contour has been maxed out at 2 due to the rapid
increase of the function in both m and �. The dotted lines
represent equality with 1 and between the dotted lines is
where the phase of the �m ,�� mode allows for strong cou-
pling with the electron beam. The plot shows that our con-
dition for weak coupling is violated only for �m ,��= �1,1�
�the mode that couples to the electron beam by design�. As �
increases from the initial value, the coupling to other modes
should be further reduced. Furthermore higher-order radial
eigenmodes will fall behind the electron beam at a faster rate

due to their decreased group velocity. We note that in other
situations, Eq. �B4� may be satisfied for a finite number of
�m ,�� pairs. In this situation, the beam can be a source of
Raman instability for the pulse, but this is a topic for future
research.

APPENDIX C: PONDEROMOTIVE PILING

We can show that the charge piling is not the result of the
axial ponderomotive force of the pulse from the m=0 spatial
harmonic. For small radii, the axial ponderomotive force is

Fz
pm = −

mec
2

�0

 2a0

k0wch
�2�1 −

4

�2

v0

c

 �p

wch
�2

�
1 +
2�p

2

�2wch
2 �−1�2

ẑ · �e−2�z − cgt/c�t�
2
. �C1�

If we expand the above equation about the maximum �z
=cgt+c�t /2� and set z=vz0t+z1, we have, to lowest order,

d2z1

dt2 =
4�e−1/2

mec�t�0
3�1 − 
 2

c�t
�2
z1 +

�k

k0
ct −

c�t

2
�2� ,

�C2�

where � is the magnitude of the coefficient of the gradient in
Eq. �C1�. Because we are interested in z1�c�t /2, we can
solve Eq. �C2� iteratively and find for t��
��te

1/4�mec
2�0

3 /4��1/2,

z1 � z1,0 −
�k

k0
ct +

c�t

2

 t

�
�2�1 − 
2z1,0

c�t
− 1�2� . �C3�

We can now show that any two charges initially separated by
any distance for z1�c�t /2 will get closer in space and thus
cause a piling of charge. From Eq. �C3�, we have that

z1
B�t� − z1

A�t�
z1,0

B − z1,0
A � 1 − 2
 t

�
�2
 z1,0

B + z1,0
A

c�t
− 1� . �C4�

Noting that z1,0
B +z1,0

A !c�t for two charges starting to the
right of maximum, the separation always decreases for t��.
Electrons in the strong region of the ponderomotive force are
able to catch up with those in the weaker region of the force
resulting in a local axial focusing of the beam. The time scale
for this process to occur can be estimated from �, which for
our parameters are ��50 ns, a much longer time scale than
those considered here.

APPENDIX D: MODULATIONS OF THE ELECTRON
BEAM

The modulations of the electron beam are an edge effect
due to the finite extent of the electron beam. To demonstrate
this, we start by considering the beam dynamics at the beam
boundary. For simplicity, we limit our analysis to the longi-
tudinal dynamics. The electromagnetic field is treated as a
perturbation on the beam, which is justified because the
beam boundary is at �B=3.3c�t of the laser pulse. A zeroth
order beam profile n0�z�=n0�1−"�z−vz0t−�B��, where " is
the unit step function and a zeroth order velocity uz,0�z�
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FIG. 10. �Color online� Coupling inequality from the left-hand
side of Eq. �B4� as a function of radial eigenmode number, �, and
spatial harmonic number, n. Between the dotted lines, the inequality
is less than 1.
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=vz0 satisfies a simple fluid equilibrium. We now perturb this
equilibrium with the presence of the m=1 spatial harmonic.
The first-order equations are then

�n1

��
+

�

��
�v1n0� = 0, �D1�

�v1

��
= 2

a0J1�
�
�0

3 
 c2

wch
����,��eik��−�v�� + c.c., �D2�

where we have switched to the beam frame coordinates and
defined �v�c−vz0. Differentiating Eq. �D1� and noting that
n0 is independent of �, we find

�2n1

��2 = − �eik��−�v���
�

��
n0 + c.c., �D3�

where �=2a0J1�
�c2 /wch�0
3 and we have used the fact that

the density derivative across the beam boundary is large.
Integrating twice over � and using the condition that n1��
=0�=0 yields the following:

n1��,�� � − �
�bn0

k�v

� − ib

�2 + b2e−��/c�t�
2+ik���� − �B� + c.c.,

�D4�

where b=k�c�t�2��v /�v�, �v=c−cg, and we note that Eq.
�D4� is only valid for ��4�0

2 /�0�17 ps. The perturbation
of the electric field across the beam edge produces an im-
pulse perturbation in the density that grows secularly in the
beam frame. We iterate to find the effect of n1 on � by
inserting Eq. �D4� into Eq. �10� with Jb�qcn1. Switching to
pulse frame coordinates and defining the pulse frame coordi-
nate ��z−cgt, we have the following:

1

c

��1

��
�

32

�0

J1�
�
�k0wch�2
�p,b

�0
�2
 �b

wch
�2

�e−11��0����� − ��v − �B� , �D5�

where we have dropped the phase and note that the strongest
response will be when the phase is an integer multiple of 2�.
Upon integrating, we obtain the response of the pulse from
the secular growth of the beam perturbation

�1 =
32

�0

J1�
�
�k0wch�2
�p,b

�m
�2
 �b

wch
�2

�e−11�k�� − �B���"�� − �B − ��v� − "�� − �B�� .

�D6�

The first-order density leaves an imprint on the laser pulse
that grows in spatial extent and size as the electron beam
moves through the pulse for ���B. Because the imprint on
the pulse is initially small in spatial extent, it is very broad
spectrally and is able to drive short-wavelength modulations
of the electron beam. Figure 11, a zoomed in version of Fig.
1 for the 3 �m, 37 nC beam at ���B, shows the growth of
this imprint in our simulations. From Eq. �D6�, we obtain the
following effective growth time for the imprint perturbation:

�imp =
e11

32

�0

J1�
�

 �m

�p,b
�2
wch

�b
�2

�k0wch�2�0
−1, �D7�

which, for the parameters considered here, gives �imp
�3.4 ns. This is close to the size of the perturbation shown
in Fig. 11 for small times �1��=2.5 ps, �=�B��6�10−4

from the simulation and our growth time gives 2.5 /3400
�7�10−4. Because the field at �=�B is initially small, the
field enhancement from the imprint quickly surpasses the
initial field in amplitude, which results in a feedback; the
nonlinearity causes the imprint and field amplitude to grow
quickly as seen in Fig. 11 �our simple model in this appendix
only works for t��imp�. We note that smoothing the axial
beam boundaries could eliminate this effect, while higher-
density beams would exasperate the effect.
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